繁體 | Eng
收藏夾
->

意見反饋

Results 1 - 1 of about 1
  • 彭世軍
    120.84.23.*編輯此資訊2013-01-25
    反饋信息: 《數學通報》編輯部網絡投稿編輯係統 010-58807753 - 訪問網站

    關於與威爾遜素數定理公式完全等價的兩個新公式的證明
    (笫二稿.增加串式素數的猜想)
    [作者簡介]彭世軍:廣西柳州市人.工書法,尤擅長狂草書法.喜詞賦.曾撰一聯雲:播深情與翰墨,寄逸興於筆端.數學愛好,乃是業餘也.
    電話:13078097211
    (將此文發於本人博客20121213)
    已知,威爾遜素數定理公式:
    [(n-1)!+1]/n =k 1 <1>
    當n爲素數時,k1爲整數. (n-1)!錶示1至(n-1)的連乘.也稱爲階乘.
    本文要證明:
    [(n-2)!-1]/n=k2 . <2>.
    當n爲素數時,k2爲整數
    . <2>式與 <1>式,完全等價。
    證明: 己知:威爾遜素數定理公式:
    [(n-1)!+1]/n =k 1 <1>
    當n爲素數時,k1爲整數.
    ∵[(n-1)!+1]/n =k 1 <1>
    ∴(n-1)!+1 =nk 1
    上式兩邊-n.得:
    (n-1)!+1-n =nk1-n
    ∵(n-1)!= (n-1)(n-2)!
    ∴(n-1) (n-2)!-(n-1) =n(k1-1)
    ∴(n-1){ (n-2)!-1}/n=(k1-1) (*)
    當{ (n-2)!-1}>1,即:n>3.且n是素數時,根據威爾遜素數定理, (*)式上式兩邊必須都是整數,
    ∴{ (n-2)!-1}/n .肯定是整數。
    令: { (n-2)!-1}/n=k2 <2>
    <2>式,與<1>完全等價。而且<2>式的計算量與<1>式相比,少瞭一個階。這是<2>式優越之處。所以, (2)式與(1)式等價.是威爾遜素數定理的另一錶達式.
    將<2>式代入下式(*):
    (n-1){ (n-2)!-1}/n=(k1-1) (*)
    得:
    (n-1)k2=(k1-1)
    k2=(k1-1)/(n-1) 或者k1=(n-1)k2+1
    上述兩式,錶達的是<2>式與<1>式之間的關係。

    下麵,拓展上麵思路,
    己知:
    { (n-2)!-1}/n=k2 <2>
    ∴(n-2)!-1=nk2
    ∵(n-2)!= (n-2)(n-3)!
    ∴(n-2) (n-3)!-1=nk2
    ∴(n-2) (n-3)!=nk2+1
    上式兩邊-(n-2),得:
    (n-2) (n-3)! -(n-2)=nk2+1-(n-2)
    (n-2){ (n-3)! -1}=nk2-n+3
    ∴(n-2){ (n-3)! -1}-3=n(k2-1)
    ∴[(n-2){ (n-3)! -1}-3]/n=(k2-1)
    令(k2-1) =k3則上式可錶爲:
    [(n-2){ (n-3)! -1}-3]/n=(k2-1) =k3 (3)
    當[(n-2){ (n-3)! -1}-3]>1, 即:n>5.且n是素數時,根據威爾遜素數定理, (3)式上式兩邊必須都是整數,所以, k3是整數. 所以, (3)式與(1)式等價.是威爾遜素數定理的另一錶達式.
    ∵k1=(n-1)k2+1
    ∵k3 =(k2-1)
    ∴k2= k3+1
    ∴k1=(n-1)k2+1=(n-1)( k3+1)+1
    ∴k1,k2,k3,即有奇數,也有偶數.而且, k2,k3,還是兩個相鄰的自然數.
    上麵說明的是,當n是素數時,三個威爾遜素數定理公式之間的關係.
    不得不遺憾的指出,對n的降階運動,隻能進行到此.
    但卻由此,獲得瞭兩個與威爾遜素數定理公式等價的公式,還是有所收獲的.
    下麵驗算一下.
    己知: 三個威爾遜素數定理公式
    [(n-1)!+1]/n =k 1 <1>
    [(n-2)!-1]/n=k2 <2>
    [(n-2){ (n-3)! -1}-3]/n=k3 (3)
    令:n=17 素數,看k 1, k2, k3值如何?
    將n=17,代入<1>式得:
    k 1 =[(n-1)!+1]/n =[(17-1)!+1]/17= 1,230,752,346,353
    將n=17,代入<2>式得:
    k2 =[(n-2)!-1]/n=[(17-2)!-1]/17=76,922,021,647
    將n=17,代入<3>式得:
    k3 =[(n-2){ (n-3)! -1}-3]/n=[(17-2){ (17-3)! -1}-3]/ 17
    =76,922,021,646
    ∵k3 =(k2-1)
    ∴76,922,021,646=76,922,021,647-1
    ∵k1=(n-1)k2+1
    ∴1,230,752,346,353=(17-1)* 76,922,021,647+1
    驗算無誤!

    定義:當n是素數,而k1,k2,k3中有一個或有兩個也是素數時,則稱n,ki,kj(j,i=1,2,3)爲串式素數.因爲ki是素數,所以又可將ki代入三個威爾遜素數定理公式,同樣産生另一組k1,k2,k3,且有一個或有兩個也有可能是素數?隻要每一次的運算總有一個素數産生,則上述運算就可重複進行.即下述猜想是否成立:(1)是否有無窮多的串式素數?(2)至長的串式素數有多長?即:串在這根威爾遜竹棍上的素數,至多的能串多少個?
    簡稱:串式素數猜想.
    稱串式素數.是把威爾遜素數公式想象爲一根竹棍,而n,ki素數就串在這根竹棍上,猶如,燒烤攤上的羊肉串.
    實際尋找串式素數:
    己知: 三個威爾遜素數定理公式:
    [(n-1)!+1]/n =k 1 <1>
    [(n-2)!-1]/n=k2 <2>
    [(n-2){ (n-3)! -1}-3]/n=k3 (3)
    令:n=7,代入三個威爾遜素數定理公式,則:
    K1=103,素數. k2=17,素數. k3=16,
    ∴7, 103, 17,構成一組串式素數.
    下一步:又將K1=103代入三個威爾遜素數定理公式,因手提電腦的運算能力有限,隻能作罷.但可將k2=17代入三個威爾遜素數定理公式,即:
    令:n=17.則:
    K1= 1,230,752,346,353
    k2= 76,922,021,647
    k3= 76,922,021,646
    因手頭無大的素數錶,,所以無法判斷K1, k2是否是素數.但根據本人的研究結果K1, k2有成爲素數的可能性.順便透露一下,我已研究出,判斷任何一個自然數,是否有可能是素數的法則.如果,該自然數有可能是素數,則可對其進行快速的因式分解.但需編程上大型機進行運算.

    發消息:彭世軍證明瞭兩個與威爾遜素數定理公式完全等價的新公式!並發佈: 串式素數猜想.




    廣西柳州市南站路二區3-14
    1307809XXXX
    bsjgz@sina.com


歡迎發表意見/建議

©2025 孫悟空
主站蜘蛛池模板: 一个人看的毛片| 一本伊大人香蕉在线观看| 国产精品视频网站你懂得| 欧美和拘做受全程看| www一级毛片| 免费在线观看黄网| 性高朝久久久久久久| 狼狼综合久久久久综合网| 一区二区网站在线观看| 亚洲国产日韩在线成人蜜芽| 国产人妖在线观看| 在线美女免费观看网站h| 最近中文国语字幕在线播放| 美女私密无遮挡网站视频| 91精品久久久久久久久中文字幕| 久久精品国产亚洲AV麻豆不卡| 免费人成网站在线高清| 国产成人av在线免播放观看| 日韩成年人视频| 筱惠欲乱美女全文免费全文| 国产人与动zozo| 久久人人爽爽爽人久久久| 亚洲欧美日韩中文字幕在线| 国产福利在线观看视频| 女人18片毛片60分钟| 欧美日韩国产精品自在自线| 欧美欧洲性色老头老妇| 久久99国产精品尤物| 再深点灬舒服灬快h视频| 国产在线a不卡免费视频| 国产精品国语自产拍在线观看| 日韩精品人妻系列无码av东京| 白洁和邻居几个老头| 美女脱得一二净无内裤全身的照片| 国产一区二区三区夜色| 巨胸喷奶水视频www免费视频| 亚洲午夜精品久久久久久浪潮| 国产欧美激情一区二区三区-老狼| 天天做天天做天天综合网| 日韩精品久久久免费观看| 欧美性大战久久久久久久蜜桃|